
1

Higher-Order Attribute-Enhancing
Heterogeneous Graph Neural Networks

Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, Philip S. Yu Fellow, IEEE, Lifang He

Abstract—Graph neural networks (GNNs) have been widely used in deep learning on graphs. They can learn effective node
representations that achieve superior performances in graph analysis tasks such as node classification and node clustering. However,
most methods ignore the heterogeneity in real-world graphs. Methods designed for heterogeneous graphs, on the other hand, fail to
learn complex semantic representations because they only use meta-paths instead of meta-graphs. Furthermore, they cannot fully
capture the content-based correlations between nodes, as they either do not use the self-attention mechanism or only use it to
consider the immediate neighbors of each node, ignoring the higher-order neighbors. We propose a novel Higher-order
Attribute-Enhancing (HAE) framework that enhances node embedding in a layer-by-layer manner. Under the HAE framework, we
propose a Higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics, and leverages the self-attention
mechanism to explore content-based nodes’ interactions. The unique higher-order architecture of HAEGNN allows examining the
first-order as well as higher-order neighborhoods. Moreover, HAEGNN shows good explainability as it learns the importances of different
meta-paths and meta-graphs. HAEGNN is also memory-efficient, for it avoids per meta-path based matrix calculation. Experimental
results not only show HAEGNN’s superior performance against the state-of-the-art methods in node classification, node clustering, and
visualization, but also demonstrate its superiorities in terms of memory efficiency and explainability.

Index Terms—Heterogeneous network, graph neural network, node embedding, higher-order, meta-path, meta-graph

F

1 INTRODUCTION

Networks are ubiquitous in our daily lives with exam-
ples such as transportation networks and social networks.
Network representation learning, as the foundation of
downstream analysis tasks including node classification [1],
[2], [3], node clustering [3] and visualization [4], has been
attracting increasing attention in both academia and indus-
try. In recent years, Graph Neural Networks (GNNs) have
been widely adopted in network representation learning,
and have shown state-of-the-art performances. For example,
[5] proposes a Graph Convolutional Network (GCN) frame-
work, which is a variant of convolutional neural networks.
It operates directly on graphs and incorporates the 1-step
neighborhood for each node’s embedding. Graph Attention
Network (GAT) [3] further introduces a self-attention mech-
anism [6] to focus on the most relevant neighboring nodes.
These methods [5], [7], [3] treat networks as homogeneous
ones, while there are some most recent studies [8], [9],
[10], [11], [12] that also consider the heterogeneity of real-
world networks. Heterogeneous Graph Attention Network
(HAN) [8] learns trainable weights to fuse meta-path sam-
pling based node embeddings. Heterogeneous Graph Neu-

• Jianxin Li and Hao Peng are with Beijing Advanced Innovation Center
for Big Data and Brain Computing, Beihang University, Beijing 100083,
China. E-mail: {lijx, penghao}@act.buaa.edu.cn.

• Yuwei Cao, Yingtong Dou, and Philip S. Yu are with the Department of
Computer Science, University of Illinois at Chicago, Chicago, IL 60607,
USA. E-mail:{ycao43, ydou5, psyu}@.uic.edu.

• Hekai Zhang is with School of Information Science and Engi-
neering, Yanshan University, Qinhuangdao 066004, China. E-mail:
hekai zhang@163.com.

• Lifang He is with the Department of Computer Science and En-
gineering, Lehigh University, Bethlehem, PA 18015 USA. E-mail:
lih319@lehigh.edu.

Manuscript received April, 2021. (Corresponding author: Hao Peng.)

ral Network (HetGNN) [10] aggregates multi-modal fea-
tures from heterogeneous neighbors by combining bi-LSTM,
self-attention, types combination and other complex neural
network technologies. Heterogeneous Graph Transformer
(HGT) [11] leverages type-dependent parameters based on
mutual attention, message passing, residual connection,
target-specific aggregation function, etc. Metapath Aggre-
gated Graph Neural Network (MAGNN) [12] makes use
of meta-path sampling, intra-metapath and inter-metapath
aggregation technologies to generate the embedding of the
target type node. Graph Transformer Network (GTN) [9]
learns task-oriented meta-paths discovering. However, the
heterogeneity issue has not been fully addressed in a con-
venient manner, as the existing methods either limit their
sources of semantics to meta-paths that cannot fully capture
the semantic-based similarities between nodes, or employ
complex neural network technologies.

In this work, we consider a Heterogeneous Information
Network (HIN) [13] - i.e., a network in which there are
different types of nodes and edges involved. For capturing
the complex semantics in a HIN, the concepts of meta-
schema, as well as the meta-paths and meta-graphs defined
at the schema level, have been developed. Both meta-paths
and meta-graphs can reflect the similarity between two
nodes; however, it has been shown by studies on recommen-
dation system [14], attributed graph representation learn-
ing [15] and unsupervised network embedding [16], [17]
that compared to meta-paths, meta-graphs can capture more
complex semantics. Take the citation network DBLP shown
in Fig. 2(a) as an example, meta-path P1 decides that two
authors are similar as long as they publish their works in the
same conference, while meta-graph P3 further requires them
to co-work with the same third author in order for these two

2

authors to be considered as similar. Therefore, instead of
exploring the semantics solely by meta-paths, incorporating
meta-graphs is essentially a better way to characterize the
rich semantics [18]. In fact, experimental results in [19]
also suggest that combined use of meta-paths and meta-
graphs better help capture the similarities between entities.
It is worth noting that when using multiple meta-paths
and meta-graphs in combination, we should put different
emphases on each of them, as some meta-paths or meta-
graphs may convey more important semantics compared to
the others. Also, since different meta-paths and meta-graphs
learn embedding in different semantic aspects, figuring out
an effective way to assemble them is of crucial importance.

Another issue with the current methods is that they all
ignore the content-based relatedness between nodes to some
extent. To the best of our knowledge, none of the current
methods is capable of capturing interdependencies between
nodes and their higher-order neighbors. Given a node, we
can define its neighbors using meta-paths and meta-graphs.
According to the self-attention mechanism [6], a node and
a neighbor are related, and the extent of their relatedness,
i.e., their content-based similarity [20], can be measured by
an attention score that computes the distance of their rep-
resentations. However, two nodes that are non-immediate
neighbors of each other (i.e., not directly connected by any
meta-paths or meta-graphs, but share some common meta-
paths or meta-graphs based neighbors) are also correlated,
and we refer to such nodes as higher-order neighbors. For
example, in the DBLP dataset, two authors a1 and a2 may
publish their works in one conference c1, while a1 and a
third author a3 might have their works published in the
other conference c2. Then, according to meta-path P1, a2

and a3 are the neighbors of a1. In such a case, although
a2 and a3 are not the direct neighbors of each other, they
are still correlated, since both of them are related to a1.
The higher-order neighbors should not be ignored when
considering the content-based interdependencies between
nodes. Therefore, a self-attention structure that simulta-
neously examines the first-order, second-order, as well as
higher-order neighborhoods, is desired.

In this paper, we propose a novel Higher-order
Attribute-Enhancing Graph Neural Network (HAEGNN) to
address the above issues. Specifically, we design a Higher-
order Attribute-Enhancing framework (HAE) to combine
multiple Semantic-based Convolutional Layers (SCLs) and
Content-based self-Attention Layers (CALs). We refer to
SCLs and CALs collectively as attribute-enhancing layers. We
elaborate on these three components as follows.

Semantic-Based Convolutional Layer (SCL). SCL en-
hances the input node features with semantics. It incor-
porates multiple meta-paths and meta-graphs to capture
the rich, heterogeneous semantics in them. These meta-
paths and meta-graphs need to begin and end with the
same node type (referred to as the target type). Each meta-
path/meta-graph is associated with a trainable weight. The
weights allow us to focus more on the most important
meta-paths/meta-graphs. Based on that, we define a meta-
paths/meta-graphs instances based similarity between two
nodes of the target type, and this similarity is parameterized
by the weights of meta-paths/meta-graphs. After that, we
construct an adjacency matrix composed of the similarities

between all pairs of target nodes. At this point, the raw
heterogeneous network has been converted into a homo-
geneous network with weighted connections between the
target nodes. We then apply graph convolutions [5] on the
converted network. In this way, SCL fuses the input node
features with meaningful semantics.

Content-Based Self-Attention Layer (CAL). CAL lever-
ages the content-based interactions between nodes and their
neighbors for enhanced node embedding. We construct a
binary adjacency matrix based on the meta-paths/meta-
graphs based connections between nodes. Similar to the
SCL case, the adjacency matrix defines a converted, homo-
geneous network. Given the converted network, we then
leverage the self-attention mechanism [6] to compute the
hidden representations of each node by paying attention
to its neighbors. Here, the term content-based attention is
used as opposed to position-based attention [20]. Namely,
the attention scores depend on the representations of node-
neighbor pairs, and we do not differentiate the order of the
neighbors when applying attention.

Higher-Order Attribute-Enhancing Framework (HAE).
The HAE framework repeatedly stacks multiple SCLs and
CALs. In this way, HAE gradually enhances the initial input
node features with semantics and content-based interac-
tions, layer by layer. Especially, by stacking multiple CALs,
we can deploy higher-order neighbors. It is worth noting
that the HAE framework allows the stacking of an arbitrary
number of SCLs and CALs in an arbitrary sequence. This
provides more flexibility, as the user can organize the build-
ing blocks according to the needs of the task. HAEGNN ,
specifically, is composed of one SCL followed by a number
of CALs. We adopt such a design since it has been shown
by studies in computer vision (CV) [21] that self-attention is
especially impactful when used in later layers, and after the
convolutional layers. In this study, we also experiment on
more variations under the HAE framework for comparison.

We conduct extensive experiments on three datasets
to evaluate the proposed HAEGNN model and com-
pare it with the state-of-the-art baselines. The results
show that HAEGNN outperforms the baselines. Besides,
HAEGNN demonstrates superiorities in terms of effi-
ciency and explainability. We also present experimental
results to illustrate the effectiveness of the proposed se-
mantic capturing approach as well as higher-order archi-
tecture. The code of this work is publicly available at
https://github.com/RingBDStack/HAE.

The main contributions of this paper can be summarized
as follows: 1) We propose a novel HAEGNN framework
for heterogeneous network representation learning. It incor-
porates meta-paths and meta-graphs for semantics, while
leveraging the self-attention mechanism to explore content-
based interactions between nodes and their immediate and
higher-order neighbors. 2) Compared to the existing meth-
ods, HAEGNN not only incorporates richer heterogeneous
semantics, but also better captures the long-range content-
based interdependencies of nodes. 3) Extensive evaluations
on three datasets demonstrate the effectiveness of the pro-
posed HAEGNN over strong baselines in tasks including
node classification, node clustering, and visualization. 4) Ex-
perimental results show that HAEGNN is memory-efficient.
Compared to the best baselines, HAEGNN is able to give

3

better results with lower memory consumption. 5) Exper-
imental results also demonstrate the explainability of our
semantic meta-paths and meth-graphs.

2 RELATED WORK

Our work is closely related to four topics, i.e., graph neural
networks, network representation learning, and the avail-
able approaches to incorporate semantics as well as self-
attention. We describe details as follows.

Graph Neural Networks. GNNs, introduced by [22],
[23], are extended from recursive neural networks so as to
operate on graph-structured data. In recent years, there is an
increasing number of GNNs that generalize convolutional
operation [3]. Such GNNs can be divided into two classes,
i.e., spectral ones [24], [25], [26], [5], [3] which compute
a spectral representation of the graphs, and non-spectral
ones [27], [28], [2] which define convolutions directly on
the graph to operate on groups of spatially close neighbors.
Compared to non-spectral approaches, spectral approaches
naturally deal with different sized neighborhoods [3]. For
example, [5] defines a simplified convolution that operates
in a 1-step neighborhood around each node. [3], which is
also a spectral approach, improves performance by leverag-
ing masked self-attention to capture the content-based inter-
actions between nodes and their 1-step neighbors. Despite
their successes in network analysis tasks, [3] and [5] neglect
the heterogeneous semantics in data.

Network Representation Learning. This class of meth-
ods learns low dimensional vector representations for nodes
in the networks. The derived representations are usually
called node embedding, which can be applied to down-
stream network analysis tasks [29]. Network representation
learning methods can be divided into unsupervised and
semi-supervised ones. Unsupervised techniques preserve
the structural information of the network without any prior
labeling knowledge. Among unsupervised techniques, there
are several methods proposed for homogeneous networks,
such as random walk based ones [30], [31], matrix factoriza-
tion based ones [32], [33], topological structure and attribute
proximity based ones [34], and others [35]. In addition, re-
cent research work of unsupervised high-order network rep-
resentation learning models [36], [37] have shown the im-
portance of motif, typed-motif or graphlet in long-distance
feature representation. NEU algorithm [38] considers first-
order proximity and second-order proximity, and formalizes
proximity matrix construction and dimension reduction to
learn unsupervised high-order network embedding. There
are also heterogeneous methods that incorporate seman-
tics, i.e., heterogeneous structural information. For example,
Metapath2vec [39] explores semantics contained in meta-
paths through meta-path guided random walking. HeteS-
paceyWalk [16] formalizes the meta-path guided random
walk as a higher-order Markov Chain Process to attain
stationary distribution among nodes and extends its method
so as to be applied on meta-graphs and meta-schemas.
Our works pay more attention to how to make use of
multiple layers of graph neural networks to learn higher-
order heterogeneous graph representation.

Instead of preserving solely the structural information,
semi-supervised network representation learning methods

based on GNNs further leverage available labels to tailor
the embedding for specific tasks [9]. Many semi-supervised
methods such as the aforementioned [5], [7], [3], [40], al-
though introducing techniques such as spectral convolu-
tion [24] and attention mechanism [6] for better perfor-
mances, share the common limitation of ignoring the hetero-
geneity in real-world networks. SNDE [7] is a homogeneous
model that learns both supervised local network structure
and unsupervised global network structure. GTN [9] ad-
dresses the heterogeneity issue by learning weighted, task-
oriented meta-paths. However, it neglects the content-based
nodes’ interactions for not utilizing the attention mecha-
nism [6] in its design. HAN [8] includes both semantic-level
attention and node-level attention. Nevertheless, [8] does
not incorporate meta-graphs, and its semantics come only
from meta-paths. Furthermore, [8] does not consider the
long-range dependencies between nodes, and its node-level
attention explores solely the first-order neighborhoods. Het-
GNN [10] conducts neighbors sampling to capture the inter-
actions between strongly correlated heterogeneous neigh-
bors; however, the semantically meaningful meta-paths
and meta-graphs are not leveraged. HGT [11] implements
complex neural aggregations among heterogeneous neigh-
bors, and gives up semantically meaningful meta-paths
and meta-graphs. RSHN [41] utilizes graph structure and
implicit relation structural information to simultaneously
learn node and edge type embedding. MAGNN [12] ex-
plores meta-path sampling based intra-metapath and inter-
metapath aggregations among heterogeneous neighbors,
and ignores more semantical meta-graphs. Overall, existing
semi-supervised methods incorporate insufficient seman-
tics, and cannot fully leverage the content-based relatedness
between nodes in a convenient manner.

Incorporate Semantics. Studies that deal with heteroge-
neous graphs need to properly address the heterogeneity
of data. Examples can be found in unsupervised [39], [17],
[16], [42] and semi-supervised [8], [10], [41], [11], [12] net-
work embedding, as well as in other fields such as event
mining [43], [44], medical data analysis [45], cyber threat
intelligence [46], etc. All of the above studies adopt the most
common approach: they first model the data as HINs [13],
then leverage meta-paths and/or meta-graphs. Studies on
recommendation [14], semi-supervised attributed graph em-
bedding [15] and unsupervised network embedding [16]
have shown that compared to meta-paths, meta-graphs can
capture more complex semantics, and combined use of both
gives better experimental results. Our model simultaneously
leverages meta-paths and meta-graphs, and therefore in-
corporates richer semantics compared to previous state-of-
the-art semi-supervised network embedding methods [8],
[12]. Recently developed content-aware heterogeneous net-
work representation technologies demonstrate superior per-
formance in downstream applications. For example, task-
guided combination model [47] utilizes useful meta-paths
selected by specific tasks, e.g., the author identification, and
human experience to help generate target types of node
embedding in an unsupervised manner. Camel [48] com-
bines textual content semantic and meta-path augmented
structure features to learn node embedding in a supervised
manner. SHINE [49] learns users’ embedded representation
from multiple heterogeneous networks, including sentiment

4

network, social network, and profile network, in a super-
vised manner. Our model presents a more generalized and
deep content-aware heterogeneous graph representation in
a semi-supervised manner. Embedding learned from dif-
ferent meta-paths/meta-graphs are in different semantic
aspects and need to be assembled properly. [9] concatenates
the embedding together. [8] maps all embedding into one
same space then computes a weighted aggregation. In con-
trast, the SCL in our model fuses all meta-paths and meta-
graphs before learning. In this way, our model naturally
learns embedding in one vector space and saves the trouble
of further transformations and concatenations.

Incorporate Self-Attention. The attention mechanism,
since its introduction [6], has enjoyed rich success in various
Natural Language Processing (NLP) [50], [51] and CV [52],
[53] tasks. Compared to convolution, the attention mecha-
nism better handles long-range dependencies [40]. In par-
ticular, the self-attention mechanism captures the content-
based similarity between two entities by computing an
attention score that measures the distance of their represen-
tations [20].

Existing heterogeneous network representation learning
methods [8], [9], [10], [11], [12], [41] are not using the self-
attention mechanism to its maximum extent in a convenient
way. Specifically, [9], [10] and [41] don’t leverage node-level
self-attention, and ignore the content-based interactions be-
tween nodes (though [10] leverages type-level attention to
combine the type-wise neighbors’ embedding by using bi-
LSTM units). [11] employs complex mutual attention and
message passing technologies, and [12] develops both intra-
metapath and inter-metapath aggregation technologies. It
is worthwhile to develop a convenient new framework for
heterogeneous graph representation learning that considers
both node-level self-attention and content-based interac-
tions. The node-level attention architecture in [8] is single-
layered and considers solely the first-order neighbors of
each node. In contrast, our model adopts a higher-order
architecture that stacks multiple CALs. In this way, our
model pays attention to the first-order as well as higher-
order neighborhoods and fully captures content-based in-
terdependencies between nodes. The effectiveness of such
higher-order self-attention architecture has been proven by
the latest studies in CV [21]. Moreover, our model combines
convolutional (through SCLs) with self-attention (through
CALs) for better performance. This approach is also shown
to be useful by most recent CV studies [53] that reach state-
of-the-art performances through combining attention with
convolutional features.

3 PRELIMINARY

We present the definitions of concepts related to this
work, including heterogeneous information network, meta-
schema, meta-path and meta-graph.

Definition 3.1. Heterogeneous Information Network [13] A
heterogeneous information network (HIN) is a graph G = (V, E),
where V and E stand for collections of nodes and edges that are of
various types.

For example, the DBLP dataset used in this study is a
HIN. It contains nodes of multiple types, including authors,

papers, conferences and terms (keywords). It also contains
edges (relations) of different types such as publish relation
between authors and papers, published in relation between
papers and conferences, and contains relation between pa-
pers and terms.

Definition 3.2. Meta-Schema [13]. Given a HIN G = (V, E),
its meta-schema, denoted as TG = (L,R), is a directed graph
defined over L, the node types in G, and R, the edge types in G.

For example, Fig. 2(a) shows the meta-schema of the
DBLP dataset, which is a directed graph that summarizes
all the node types and edge types in the dataset.

Definition 3.3. Meta-Path [13] Given a meta-schema TG =

(L,R), a meta-pathP , denoted as L1
R1−−→ L2

R2−−→ ...
Rk−1−−−→ Lk,

is a path on TG that defines a composite relation R = R1 ◦ R2 ◦
... ◦ Rk−1 between node type L1 and Lk. Here ◦ is the relation
composition operator.

We say a path p = v1 − v2 − ... − vk between v1 and
vk in the network G follows the meta-path P , if ∀i, vi is of
type Li. We call p as a meta-path instance of P . For example,
P1 in Fig. 2(a) is a meta-path defined on the meta-schema
of the DBLP dataset. P1 defines the relation between author
nodes. a1 − p1 − c1 − p2 − a2 is a meta-path instance of P1,
indicating that author a1 and a2 are similar, because they
publish their works, p1 and p2, in the same conference c1.

Definition 3.4. Meta-Graph [14]. Given a meta-schema TG =
(L,R), a meta-graphM, is a directed acyclic graph (DAG) with
a single source node and a single sink node. The nodes and edges
inM are confined to L and R, respectively.

We define the meta-graph instance in the same manner as
to how we define the meta-path instance. For example, P4 in
Fig. 2(a) is a meta-graph defined on the meta-schema of the
DBLP dataset. Similar to meta-path P1, P4 also defines the
relation between the author nodes. However, P4 conveys
richer and more complex semantics as compared to P1.
a1 − p1 − c1(t1) − p2 − a2 is a meta-graph instance of P4.
It indicates that author a1 and a2 are similar, because they
publish their works, p1 and p2, in the same conference c1,
and furthermore, p1 and p2 share the same keyword t1.

In this study, we sometimes refer to meta-paths and
meta-graphs collectively as semantic structures. For brevity,
we denote a semantic structure using its component node
types. For example, we denote P1 in Fig. 2(a) as APCPA,
and P3 as APA(C)PA. All semantic structures used in this
study begin and end with the same node type, i.e., the target
type. For example, as shown in Fig. 2(a), the target type of
the DBLP dataset is the author (A).

4 THE PROPOSED MODEL

In this section, we propose a novel Higher-order Attribute-
Enhancing Graph Neural Network (HAEGNN). In par-
ticular, we elaborate its three main components, i.e.,
Semantic-Based Convolutional Layer (SCL), Content-Based
Self-Attention Layer (CAL), and Higher-order Attribute-
Enhancing Framework (HAE).

We present the overall framework of HAEGNN in Fig. 1.
As shown in Fig. 1(c), HAEGNN models contain one SCL
followed by a number of CALs. The output node embedding

5

...

 Semantic Structures Weights GCN

A ...

 Semantic Structures GAT

A’

 (a) Semantic-Based Convolutional Layer (SCL) (b) Content-Based Self-Attention Layer (CAL)

 (c) Higher-Order Attribute-Enhancing Framework (HAE)

 Initial features

 ...

 HAEGNN

 SCL

 Adjacent Matrix Adjacent Matrix

CAL CAL CAL
 Enhance Enhance Enhance

 Embeddings

 ...

 Order 1 Order 2 Order 3 Order 4 ...

2l HAEGNN
3l HAEGNN

4l

Fig. 1: The architecture of the proposed Higher-order Attribute-Enhancing Graph Neural Network (HAEGNN). HAEGNN

contains three components, i.e., (a) Semantic-Based Convolutional Layer (SCL), (b) Content-Based Self-Attention Layer
(CAL), and (c) Higher-Order Attribute-Enhancing Framework (HAE). The inputs of the model are initial features such as
the BOW representations of the keywords related to the nodes.

(b) IMDB
Meta-graphs

Meta-paths

M A M

M D M

DM

Meta-schema

Meta-paths

Meta-graphs

(a) DBLP

A AP P
A

C
Meta-schema

P

C

A

T

Meta-schema

Meta-paths

Meta-graphs
(c) HUAWEI

UATAU

UAU

U U

R
M MM

D D

AR

U

A
T

U UA A
T

UAP P
T

C
A

P PTA A

P PCA A

A

Fig. 2: Meta-schema, meta-paths and meta-graphs of the DBLP, IMDB and HUAWEI datasets. In (a), A, P, C, and T stand
for Author, Paper, Conference, and Term, respectively. In (b), A, M, D, and R stand for Actor, Movie, Director, and Rating,
respectively. In (c), U, A, and T stand for User, Application, and Application type, respectively.

of each component layer serves as the input of the next layer.
Each layer enhances the node features with either semantics,
in the case of SCL, or content-based nodes’ interactions, in
the case of CAL. We refer to the total number of SCL/CAL
layers as the order of a HAEGNN . We denote HAEGNN

models with order equals to 2 (i.e., are composed of one
SCL and one CAL) as HAE2l

GNN , and denote those with
order equals to 3 (i.e., are composed of one SCL followed
by two CALs) as HAE3l

GNN , and so forth.

4.1 Semantic-Based Convolutional Layer

SCL enhances the input node features with rich semantics
contained in multiple meta-paths and meta-graphs. Fig. 1(a)
shows the structure of SCL. Specifically, for each pair
of target nodes, SCL measures a multi-semantic structure

based similarity between those two component nodes. The
similarity is parameterized by the weights of all semantic
structures. In this way, SCL constructs an adjacent matrix,
denoted as A in Fig. 1(a), that contains the similarities
between all target nodes. After that, SCL leverages convolu-
tional structures to fuse the embeddings of the target nodes
based on their similarities. As a result, SCL learns semantics
in the sense that semantically close nodes also have similar
embeddings.

Before introducing the multi-semantic structure-based
node similarity, we first show how to compute the similarity
between two nodes using a single meta-path. Commuting
matrices [13] can be leveraged for such a purpose. Given
a meta-path P = L1L2...Lk, its corresponding commuting
matrix is defined as CP = WL1L2

·WL2L3
· ... ·WLk−1Lk

,
where WLiLj

is the adjacency matrix between type Li

6

nodes and type Lj nodes. For example, for P1 = APCPA in
Fig. 2(a), its commuting matrix can be computed as CP1

=
WAP ·W PC ·WCP ·W PA = WAP ·W PC ·WT

PC ·W
T
AP ,

where the superscript T denotes matrix transposition. Note
that given CP , each of its element CP(i, j) represents
the count of meta-path instances between node v1i ∈ L1

and node vkj ∈ Lk under meta-path P . Intuitively, large
meta-path instances count reflects close linkage, therefore,
CP(i, j) reveals the similarity between v1i and vkj .

Using meta-graphs to measure the nodes’ similarity
is more complicated because meta-graphs have complex
structures. Similar to the case of meta-paths, we leverage
commuting matrices. Given a meta-graph, we adopt the
approach in [14] to compute its commuting matrix. Specifi-
cally, we treat a meta-graph as a synthesis of multiple meta-
paths. As discussed above, for each component meta-path,
we can represent its commuting matrix as a sequence of
multiplications between adjacency matrices. We then merge
the multiplication sequences of all the component meta-
paths to get the commuting matrix of the meta-graph,
and we leverage Hadamard Product, i.e., element-wise
product, for a combination when the sub-sequences differ.
For example, meta-graph P3 = APA(C)PA in Fig. 2(a)
can be split into two meta-paths, i.e., (A,P,A, P,A) and
(A,P,C, P,A). The commuting matrix of the former can be
calculated by WAP ·W PA ·WAP ·W PA, and the later
by WAP · W PC · WCP · W PA. Then, we can compute
the commuting matrix of P3 by CP3 = WAP · ((W PA ·
WAP) � (W PC ·WCP)) ·W PA. Note how the distinct
parts, W PA ·WAP and W PC ·WCP , are combined using
Hadamard Product.

Inspired by how [43] fuses multiple meta-paths for an
instance based social event similarity, we then define a
semantic structure instance based node similarity (SemSim).
SemSim simultaneously leverages multiple meta-paths and
meta-graphs to measure the similarity between two target
nodes. We present the definition of SemSim as follows.

Definition 4.1. Semantic Structure Instances Based Node
Similarity (SemSim). Given a collection of meta-paths and meta-
graphs P = {Pm}Mm=1 that start and end with the target type
Lt, the SemSim between two nodes vti ∈ Lt and vtj ∈ Lt is
defined as:

SemSim(vti, vtj) =
M∑

m=1

ωm
2×CPm(i, j)

CPm
(i, i) + CPm

(j, j)
, (1)

where ωm denotes the weight of Pm and we have a
trainable parameter vector ω = [ω1, ω2, ..., ωM] that con-
tains the weights of all meta-paths and meta-graphs. ω
is the weights vector shown in Fig. 1(a). SemSim is
asymmetric, i.e., SemSim(vti, vtj) 6= SemSim(vtj , vti).
SemSim is self-maximum, i.e., SemSim(vti, vtj) ∈
[0, 1], and SemSim(vti, vti) = SemSim(vtj , vtj) = 1.
SemSim(vti, vtj) essentially calculates a weighted summa-
tion of normalized meta-path/meta-graph instance counts.
Note that in the fractional term 2×CPm (i,j)

CPm (i,i)+CPm (j,j) , the nu-
merator counts the instances between the two nodes under
Pm, while the denominator normalizes the term with the
instances counts between the nodes themselves under Pm.

Next, we capture the semantic-based interactions be-
tween nodes with convolutional structures. Given the target

type Lt, we construct a semantic-based adjacent matrix
A ∈ RN×N , where N is the total number of nodes of
type Lt, and Aij = SemSim(vti, vtj). A is the adjacent
matrix shown in Fig. 1(a). A contains self-connections, and
Aii = SemSim(vti, vti) = 1. Note that A fuses all seman-
tic structures. Therefore, as opposed to [8], no semantic-
level aggregation is needed in this study, and the learned
embeddings naturally fall into the same vector space. We
use the bag-of-words (BOW) representations of the target
nodes as their initial features, denoted as X ∈ RN×d,
where d is the dimension of initial node features. After that,
we apply a multi-layer GCN architecture extending [5] to
heterogeneous networks. Note that our approach is different
from [5]. The adjacency matrix in [5] is directly constructed
from the raw network, assuming that the network is ho-
mogeneous. In contrast, A in this study incorporates rich
heterogeneous semantic information that are contained in
meta-paths as well as meta-graphs. The proposed GCN ar-
chitecture with sub-layers following the propagation rules:

H(l+1) = σ(D−
1
2AD−

1
2H(l)W (l)), (2)

where D is a diagonal matrix with Dii =
∑

j Aij , and
W (l) is a layer-specific trainable weight matrix. σ(·) is an
activation function such as ReLU or Sigmoid. H(0) = X is
the input node features, and H(l) ∈ RN×d the output node
features of the lth layer.

4.2 Content-Based Self-Attention Layer

CAL enhances the input node features with the content-
based interactions between nodes. As shown in Fig. 1(b),
CAL first constructs a multi-semantic structure based adja-
cency matrix, denoted as A′ in Fig. 1(b), then leverages self-
attention [6] to compute the representation of each node by
paying attention to its neighbors.

First, given a collection of meta-paths and meta-graphs
that both start and end with the target node type Lt, we
can construct an adjacency matrix A′ ∈ RN×N , where N
stands for the total number of nodes of type Lt. A

′ is a
binary matrix, and A′ij = 1 only if there exist at least 1
meta-path/meta-graph instance between node vti and node
vtj . For each node vti ∈ Lt, A

′ defines its first-order semantic
structures based neighborhood as Ni = {vtj |A′ij = 1}. Note
that vti is also in its neighborhood.

Next, we devise an attention mechanism to perform self-
attention on the target nodes. Note that unlike [3], which
pays attention to all immediate neighboring nodes in the
raw network, we perform a masked attention that pays
attention to the semantic structures based neighborhoods
as defined by A′. The attention mechanism is denoted as
a : Rd′×d′ → R, where d′ is the output dimension of CAL. a
is a single feed-forward layer with non-linearity. a takes the
linearly transformed representations of two nodes as input,
and output an attention coefficient:

eij = a(Wvti,Wvtj) = σ(aT[Wvti||Wvtj]). (3)

Here, vti ∈ Rd and vtj ∈ Rd stand for the input represen-
tations of node vti and node vtj , respectively. W ∈ Rd′×d

is a weight matrix that transforms the input node features
to higher-level features. a ∈ R2d′ is a weight vector. σ(·)

7

denotes the nonlinear function, and || stands for the con-
catenation operation. Note that W and a are shared among
all node pairs. The attention coefficient eij indicates the
importance of vtj ’s representation to vti.

For the attention coefficients to be comparable across
different nodes, we normalize them across all neighboring
nodes. We leverage softmax function and get the normalized
attention coefficient:

αij = softmax(eij) =
exp(σ(aT [Wvti||Wvtj]))∑

n∈Ni
exp(σ(aT [Wvti||Wvtn]))

,

(4)
whereNi is a set of vti’s first-order semantic structure-based
neighbors according to A′. Note that αij is asymmetric.
The output representation of vti can then be computed
by paying attention to its neighbors using the normalized
attention coefficients:

v′ti = σ

(∑
vtj∈Ni

αijWvtj

)
. (5)

We further employ multi-head attention [50] to stabilize
the learning process. Specifically, we train H independent
attention mechanisms, and concatenate their outputs as the
final representation:

v′ti = ‖Hh=1σ

(∑
vtj∈Ni

αh
ijW

hvtj

)
. (6)

Here, αh
ij stands for the head-wise normalized attention

coefficients, and W h stands for the head-wise linear trans-
formation matrix. In this study, we set the output dimension
of each head to d′ = d/H , such that the output dimension
of CAL is equal to its input dimension.

4.3 Higher-Order Attribute-Enhancing Framework
As shown in Fig. 1(c), the HAE framework stacks multi-
ple SCLs and CALs together. It constructs a higher-order
attribute-enhancing architecture that enhances the input
node features with both semantics (through SCLs) and
content-based nodes’ interactions (through CALs) in a layer-
by-layer manner.

We take HAEGNN with order equals to 4 (denoted as
HAE4l

GNN) as a concrete example to show how the higher-
order architecture works. As shown in Fig. 1(c), HAE4l

GNN

contains four component layers, i.e., one SCL followed
by three CALs. The SCL enhances the initial BOW node
features with rich heterogeneous semantics contained in
meta-paths and meta-graphs. After then, by stacking the
three CALs, HAE4l

GNN is able to capture the content-based
interaction between the first-order as well as the higher-order
semantic structures based neighborhoods. Fig. 3 illustrates this
process using the DBLP dataset as an example. A CAL
enhances each author’s embedding with the embeddings
of its first-order semantic structures based neighbors. As
a result, the first CAL enhances va1 with va2 and va3,
and enhances va2 with va1 and va4. The second CAL then
repeats this process and enhances va1 with va2. At this
point, va2 has been enhanced with va4 by the first CAL,
and therefore, the second CAL indirectly enhances va1 with
va4. Similarly, the third CAL enhances va1 with va5. In this

va1

a1

a2

a3

a4

a5

 (a) Network

P1

P1

P3

P2

 1st CAL

 2nd CAL

 3rd CAL

 (b) Higher-order enhancements

va5

va4

va2

va3

Fig. 3: An illustration of how HAE4l
GNN captures the

content-based nodes’ interactions in DBLP. (a) shows part
of the network mapped by A′, where a1 through a5 are
authors, and P1 through P3 are semantic structures listed in
Fig. 2. (b) shows how the three CALs in HAE4l

GNN gradually
enhance the author a1’s embedding with the embeddings of
its higher-order neighbors. va1 through va5 are authors’ em-
beddings that have been enhanced by the SCL in HAE4l

GNN

(and yet to be enhanced by the CALs).

way, HAE4l
GNN incorporates author a1’s embedding with

the embeddings of its first-order (author a2 and a3), second-
order (author a4), and third-order (author a5) neighbors.

As shown in Fig. 1(c), HAEGNN models take a matrix
that contains the initial features of the target type nodes as
input, and output the enhanced nodes’ embeddings. The
enhancing process is guided by task-specific loss functions.
Taking the node classification task as an example, dur-
ing training, HAEGNN models, as semi-supervised models,
observe the labels of a subset of the target nodes, and
minimize the cross-entropy between the ground-truths and
the predictions. The loss function can be formalized as:

L = −
∑
v∈Vt

yvlog(softmax(Wv + b)). (7)

Here, Vt is a subset of target nodes with pre-known labels.
yv ∈ Rc is a one-hot vector that represents the label of node
v, where c is the number of distinct classes. v ∈ Rd is the
representation of v output by HAEGNN . W ∈ Rc×d and
b ∈ Rc are the parameters of the fully connected layer that
performs linear transformation.

Note the HAE framework allows stacking of an arbitrary
number of SCLs and CALs in an arbitrary sequence. There-
fore, under the HAE framework, there are other variations
besides HAEGNN , such as models that contain solely SCLs
(denoted as HAESCL) and models that contain solely CALs
(denoted as HAECAL). Such flexibility provides users the
freedom to construct task-oriented models. For heteroge-
neous network analysis tasks including node classification,
node clustering, and visualization, we adopt the HAEGNN

architecture as elaborated above. To verify the superiority
of the HAEGNN architecture, in Section 5, we experiment
on HAEGNN of different orders, as well as other variations
under the HAE framework for comparison.

8

5 EXPERIMENTS

We evaluate the proposed HAEGNN framework through
graph analysis tasks, including node classification, node
clustering, and visualization. All these are classic tasks that
are commonly performed by network representation learn-
ing studies [29]. Furthermore, we show the merits of our
semantic enhancing approach and higher-order attribute-
enhancing strategy with experimental results, memory con-
sumption and parameter analysis.

5.1 Datasets

We conduct experiments on three datasets. We list out the
meta-schemas along with the semantic structures used in
the experiments for all datasets in Fig. 2.

DBLP: We adopt a subset of DBLP as extracted by [8].
This subset contains 27,194 nodes, including 14,328 papers
(P), 4,057 authors (A), 20 conferences (C) and 8,789 terms (T).
The subset contains 122,393 edges, with detailed statistics
in [8]. The authors are labeled by their research areas, and
there are four classes, i.e., Database, Data Mining, AI and
Information Retrieval. We use the BOW representations of
keywords (terms) as the initial features of the author nodes.

IMDB: We extract a subset of IMDB which contains
9,692 nodes, including 3,627 movies (M), 4,340 actors (A),
1,714 directors (D) and 11 rating groups (R). The dataset
contains 18,132 edges, including 10,878 between M and A,
3,627 between M and D, and 3,627 between M and R. The
movies are labeled by their genres, and there are three
classes, i.e., Action, Comedy, and Drama. We use the BOW
representations of plots as the initial features of the movies.

HUAWEI: A dataset provided by DIGIX Huawei Global
Smartphone Theme Design Competition. The dataset con-
tains de-identified users’ demographics, device usage be-
havior, and app usage behavior. There are 10,371 nodes,
including 4,200 users (U), 6,131 applications (A) and 40
application types (T). There are 248,479 edges, including
8,112 between A and U, 175,381 between A and U, 55,858
between U and T, and 9,128 between U and U (an edge
between two users indicates that they follow each other
in social media apps such as WeChat). We label the users
according to their age groups, and there are six groups,
including age < 18, 19 ∼ 26, 27 ∼ 35, 36 ∼ 44, 45 ∼ 53,
and > 54. We use the BOW representations of behavioral
attributes as the users’ initial features.

5.2 Baselines

To verify the effectiveness of the HAEGNN framework, we
experiment on HAEGNN with 1 SCL and 3 CALs, namely
HAE4l

GNN , to represent the performances of HAEGNN . We
compare with random walk or attributed network based un-
supervised baselines as well as GNN based semi-supervised
baselines. The baselines are as follows:

Unsupervised methods. We use DeepWalk [31]
(Deepw.), Metapath2vec [39] (Metap.), DANE [34] and
HONE [36] as unsupervised baselines. DANE is an at-
tributed homogeneous network. HONE is a higher-order
network representation learning using motifs for homoge-
neous networks. For experiments on DeepWalk, DANE and
HONE, we ignore the heterogeneity of the graph data. For

metapath2vec, we experiment on all meta-paths and report
the best results.

Semi-supervised methods. We use GNN based mod-
els, including SDNE [7], GCN [5], GAT [3], HAN [8],
GTN [9], RSHN [41], HetGNN [10] (HetG.), HGT [11] and
MAGNN [12] (MAG.) as semi-supervised baselines. For
SDNE, GCN and GAT, we leverage a single meta-path to
transform the datasets into homogeneous graphs before
conducting the experiments. We experiment on all meta-
paths and report the best results. HAN, GTN, RSHN, Het-
GNN, HGT and MAGNN are typical heterogeneous graph
neural network models.

In addition, we also compare HAE4l
GNN with other

variants under the HAE framework. We experiment with
three different architectures under the HAE framework,
i.e., HAEGNN (contains an SCL followed by a number
of CALs), HAESCL (contains SCLs solely) and HAECAL

(contains CALs solely). For HAEGNN , besides HAE4l
GNN ,

which contains one SCL and three CALs, we also experi-
ment on HAE2l

GNN , which contains one SCL and one CAL.
For HAESCL and HAECAL, we experiment on HAE2l

SCL,
which contains two SCLs, and HAE4l

CAL, which contains
four CALs, respectively.

5.3 Experimental Settings
For the HAE models, we set the learning rate to 0.0003,
the number of sub-layers in SCLs to 2, and the number of
attention heads in CALs to 8. We set the dropout rate of
the first CAL to 0.4, and for each of the following CALs,
we use one-half of the previous CAL’s dropout rate. The
ω in each SCL, which contains the weights of the semantic
structures, is initialized with Xavier to guarantee that the
weights are normalized and sum to 1. We optimize our
models with Adam [54]. For random walk based models,
i.e., DeepWalk and Metapath2vec, we set the window size
to 10, the walk length to 40, and the number of walks per
node to 80. For a fair comparison, we set the embedding
dimension to 64 for all models, and use the training ratio
from 0.2 to 0.8 for all semi-supervised models. For the
semi-supervised baseline methods, their parameters are set
following the original literature. We conduct all experiments
on a 64 core Intel Xeon CPU E5-2680 v4@2.40GHz with
512GB RAM and 8×NVIDIA Tesla P100-PICE GPUs. For
the acceleration of all CPUs calculations, we have adopted
a parallelized processing of binding 64 cores.

5.4 Node Classification
This section evaluates HAE4l

GNN by multi-class node clas-
sification. We adopt a Logistic Regression classifier. We use
20% − 80% of all targeted nodes for training, and let the
classifier observe their labels. The task is to predict the
labels of the remaining nodes. We repeat each experiment
ten times and take the average results. We report the overall
Macro-F1 (Ma-F1) and Micro-F1 (Mi-F1) scores in Table 1.

Overall, the results show that HAE4l
GNN outperforms

state-of-the-art baselines across all three datasets. We give
more comparative analysis with the representative semi-
supervised GNNs. Compared to GTN, HAE4l

GNN improves
the Ma-F1 and Mi-F1 scores by up to 7.83% and 7.37%
on DBLP, 5.61% and 5.79% on IMDB, and 6.02% and

9

TABLE 1: Node classification results (%) compared to the baselines.

Deepw. Metap. DANE HONE SDNE GCN GAT GTN HAN RSHN MAG. HGT HetG. HAE4l
GNN

D
B

LP

M
a-

F1
20% 73.95 81.05 80.99 77.05 81.41 83.95 84.75 83.71 89.44 88.01 89.28 90.90 90.85 91.54±.09
40% 77.71 82.73 81.43 80.43 83.03 84.88 85.42 85.36 90.74 90.28 90.83 91.11 91.77 92.91±.06
60% 79.26 83.88 83.95 83.32 85.00 85.03 86.86 87.84 91.02 91.00 91.74 92.55 92.91 93.07±.05
80% 80.52 84.21 85.01 84.06 85.22 85.37 87.27 90.51 91.37 91.91 92.05 93.04 93.15 93.69±.03

M
i-

F1

20% 73.58 81.68 81.60 76.63 82.54 83.00 84.92 84.27 89.16 87.81 90.70 91.51 90.70 91.64±.10
40% 77.27 82.59 82.58 81.55 83.19 83.51 86.11 86.72 90.25 90.04 91.31 92.28 91.95 92.40±.08
60% 80.44 83.05 82.95 83.61 84.06 84.73 87.73 88.04 91.15 91.05 92.05 93.09 93.15 93.17±.05
80% 81.93 83.21 83.66 84.13 84.41 84.80 88.26 91.35 91.77 92.06 92.37 93.25 93.77 93.82±.02

IM
D

B

M
a-

F1

20% 35.03 42.17 42.04 38.88 45.38 45.72 51.53 51.37 52.09 51.94 52.08 52.52 53.74 54.60±.10
40% 37.18 43.25 42.87 41.09 45.95 47.83 51.99 53.58 53.39 53.22 54.05 54.79 55.01 56.69±.05
60% 39.57 44.36 44.02 43.43 48.66 49.19 52.80 55.16 54.62 54.49 56.28 57.00 58.77 60.77±.08
80% 40.21 45.93 46.69 44.40 49.77 50.51 53.46 57.63 56.88 56.99 57.59 58.64 60.01 62.96±.05

M
i-

F1

20% 35.62 43.40 43.06 38.90 45.35 45.91 51.72 51.91 52.05 51.90 53.06 53.75 53.09 54.00±.07
40% 38.75 44.27 44.15 41.47 48.11 48.26 52.06 52.46 53.53 53.40 54.90 55.05 55.88 56.73±.05
60% 40.09 45.01 45.25 43.80 49.03 49.94 53.17 54.95 57.65 57.70 57.46 57.37 59.48 60.25±.05
80% 41.68 45.66 45.70 45.01 49.49 50.78 53.96 56.82 57.17 58.07 58.91 59.48 60.61 62.61±.04

H
U

A
W

EI M
a-

F1

20% 27.53 32.59 32.85 30.33 33.14 33.03 33.58 33.79 37.99 37.57 38.80 38.92 39.64 39.81±.12
40% 29.20 33.72 33.57 32.79 33.96 34.07 34.63 35.71 38.58 38.70 39.62 39.24 40.12 40.75±.08
60% 30.87 34.84 33.99 33.62 34.48 34.95 35.85 38.42 39.13 39.91 40.15 41.38 41.03 41.44±.07
80% 31.24 35.90 35.68 34.27 36.62 36.24 37.15 40.36 40.35 40.70 41.39 42.64 42.69 42.83±.03

M
i-

F1

20% 28.82 32.33 32.18 30.58 33.06 33.18 34.72 34.42 38.07 38.04 38.29 39.32 40.29 40.70±.11
40% 30.09 32.91 32.73 32.94 33.77 34.75 35.93 35.61 39.59 39.22 39.10 40.53 41.82 41.99±.07
60% 31.11 34.28 34.49 33.88 35.01 35.09 36.48 38.89 40.40 40.43 40.40 41.48 42.79 42.89±.07
80% 32.76 35.45 35.33 35.13 36.40 36.84 37.62 40.76 41.68 41.80 41.79 42.84 43.73 43.97±.04

6.38% on HUAWEI. This is because HAE4l
GNN considers the

semantic-based as well as content-based nodes’ interactions,
while GTN ignores the later for not using self-attentions.
Compared to HAN, HAE4l

GNN improves the Ma-F1 and Mi-
F1 scores by at least 2.05% and 2.02% on DBLP, 2.51% and
1.95% on IMDB, and 1.82% and 2.40% on HUAWEI. This
is because HAE4l

GNN learns semantics from not only meta-
paths but also meta-graphs, and meta-graphs are ignored by
HAN. Also, HAE4l

GNN leverages higher-order architecture
to capture the short-range as well as long-range nodes’ in-
terdependencies, while the node-level attention architecture
in HAN is single-layered and considers only the former.
Similarly, compared to MAGNN, HAE4l

GNN improves the
Ma-F1 and Mi-F1 scores by at least 1.33% and 0.94% on
DBLP, 2.52% and 0.94% on IMDB, and 1.01% and 2.18% on
HUAWEI. The superiority results show the importance of
meta-graph relations in aggregating information. Compared
to RSHN, HAE4l

GNN improves the Ma-F1 and Mi-F1 scores
by at least 1.78% and 1.76% on DBLP, 2.66% and 2.10% on
IMDB, and 1.53% and 2.17% on HUAWEI. The superiority
results show the advantage of multi-hop relationships, such
as meta-paths and meta-graphs, than single-hop relations
used in the RSHN for information aggregation. Compared
to HGT and HetGNN, HAE4l

GNN improves the Ma-F1 and
Mi-F1 scores by at least 0.16% and 0.02% on DBLP, 0.86%
and 0.25% on IMDB, and 0.14% and 0.10% on HUAWEI.
Although their performances are comparable, compared to
HGT and HetGNN, HAE4l

GNN achieves overall surpassing
results on DBLP, IMDB and HUAWEI datasets. The possible
reason is that, compared with complex neural network
structures, the model with higher-order attribute-enhancing
neural network structure is more conducive to representing
heterogeneous graphs.

A comparison between the baseline models shows that

the GNN based semi-supervised models generally are more
effective than the random walk or attributed network
based unsupervised models. SDNE, GCN, GAT, GTN, HAN,
RSHN, HetGNN, HGT, MAGNN and HAE4l

GNN largely
outperform Metapath2vec, which is the best unsupervised
structural heterogeneous network embedding model, in
both Ma-F1 and Mi-F1 scores on all datasets (except part
of results of DANE and HONE achieve comparable results
as Metapath2vec on the three datasets). Also, models that
incorporate heterogeneous semantics perform better than
the homogeneous ones, as GTN, HAN, RSHN, MAGNN,
HGT and HetGNN give higher Ma-F1 and Mi-F1 scores
than SDNE, GCN and GAT on all datasets. In sum, the node
classification results verify the effectiveness of our design,
as our models incorporate more abundant semantics, and
capture more comprehensive content-based interactions be-
tween nodes compared to the baselines.

5.5 Node Clustering and Visualization
This section compares HAE4l

GNN to the baselines by node
clustering. Deepwalk, Metapath2vec, DANE and HONE
models are unsupervised. For semi-supervised methods,
including SDNE, GCN, GAT, GTN, HAN, RSHN, MAGNN,
HGT, HetGNN and HAE framework based variants, the
training ratio is 80%. We perform 5-fold cross-validation
on each of the datasets. For each model, we first get the
embeddings learned by it. We then leverage K-means for
clustering and set the number of clusters to be the number of
ground truth classes. We report average normalized mutual
information (NMI), adjusted rand index (ARI) Fowlkes-
Mallows index (FMI), and standard deviations. We also use
t-SNE [4] to visualize the embeddings learned from the
DBLP dataset for a direct overview.

Table 2 shows the clustering results. HAE4l
GNN consis-

tently outperforms all baselines by large margins across

10

TABLE 2: Node clustering results (%) compared to the baselines.

Method
DBLP IMDB HUAWEI

NMI ARI FMI NMI ARI FMI NMI ARI FMI
Deepwalk 36.32±.13 38.55±.12 48.37±.13 20.87±.10 19.21±.10 29.52±.09 8.82±.09 6.29±.09 18.25±.10

Metapath2vec 52.96±.14 56.11±.15 64.18±.13 19.74±.10 21.16±.11 32.80±.11 10.13±.09 8.87±.09 20.59±.09
DANE 52.78±.11 56.54±.12 63.83±.10 19.65±.09 21.09±.10 32.77±.09 10.27±.09 8.96±.10 21.01±.10
HONE 45.47±.09 46.30±.08 55.75±.10 21.92±.08 20.78±.09 30.01±.10 11.66±.08 8.80±.09 22.52±.07
SDNE 55.71±.11 58.84±.12 62.26±.09 20.29±.09 22.17±.10 33.33±.09 14.55±.08 11.05±.07 25.11±.08
GCN 59.71±.10 62.66±.09 66.92±.08 22.67±.07 22.89±.06 32.96±.06 15.24±.05 11.73±.05 25.52±.05
GAT 66.23±.09 64.27±.08 74.58±.09 25.63±.06 23.78±.07 32.86±.06 20.71±.04 18.21±.04 31.07±.05
GTN 68.97±.11 69.01±.10 80.22±.11 27.59±.08 26.37±.09 38.68±.09 25.82±.07 23.74±.06 34.91±.06
HAN 66.51±.09 70.46±.08 77.22±.09 24.95±.07 26.51±.05 34.41±.06 26.93±.04 25.16±.03 33.21±.04
RSHN 66.09±.08 69.88±.06 76.40±.08 24.51±.07 26.42±.06 34.15±.05 27.07±.03 25.47±.04 34.73±.03

MAGNN 69.67±.06 74.68±.06 80.73±.07 25.71±.06 28.81±.06 37.69±.05 27.12±.03 25.89±.04 35.10±.04
HGT 71.99±.06 76.31±.05 83.16±.06 27.09±.04 29.11±.03 40.29±.04 28.00±.02 26.16±.03 36.33±.02

HetGNN 73.00±.08 77.48±.07 84.85±.07 30.86±.05 29.59±.04 42.03±.04 29.25±.02 27.24±.03 37.37±.03
HAE4l

GNN 77.64±.02 79.79±.03 85.92±.03 32.63±.02 31.28±.03 44.82±.02 30.25±.03 28.17±.03 38.92±.02

(a) Deepwalk (b) Metapath2vec (c) GCN (d) GAT

(e) HAN (f) GTN (g) HetGNN (h) HGT

(i) HAE2l
SCL (j) HAE2l

GNN
(k) HAE4l

CAL (l) HAE4l
GNN

Fig. 4: Visualization of the embeddings of the authors in DBLP. Each point corresponds to one author, and the color of the
point indicates the author’s research area.

the datasets, suggesting that HAE4l
GNN better captures the

correlations between nodes. We give more comparative
analysis with the representative semi-supervised GNNs. A
comparison between HAE4l

GNN and GTN shows that on the
DBLP dataset, HAE4l

GNN gives 8.67% higher NMI, 10.78%
higher ARI, and 5.70% higher FMI; on the IMDB dataset, it
gives 5.04% higher NMI, 4.91% higher ARI, 6.14% higher
FMI; and on the HUAWEI dataset, it gives 4.43% higher
NMI, 4.43% higher ARI, and 4.01% higher FMI. This is
because HAE4l

GNN simultaneously captures semantic-based
as well as content-based interactions between nodes, and
this combined approach is more effective than the pure
semantic-based approach as adopted by GTN. Compared to
HAN, HAE4l

GNN achieves 11.13% higher NMI, 9.33% higher
ARI, 8.70% higher FMI on DBLP, achieves 7.68% higher

NMI, 4.77% higher ARI, 10.41% higher FMI on IMDB,
and achieves 3.32% higher NMI, 3.01% higher ARI, 5.71%
higher FMI on HUAWEI. One reason is HAE4l

GNN lever-
ages meta-paths and meta-graphs for semantics, as opposed
to HAN, which solely leverages meta-paths. Moreover,
HAE4l

GNN leverages higher-order attention to fully capture
nodes’ interactions, as opposed to HAN, which only uti-
lizes the first-order neighborhoods. In short, by leveraging
the semantics contained in meta-graphs, and incorporating
higher-order content-based nodes’ interactions, HAE4l

GNN

effectively improves the node clustering performances upon
strong baselines. Compared to RSHN, HAE4l

GNN achieves
11.55% improvements in terms of NMI, 9.91% in terms of
ARI, 9.52% in terms of FMI on DBLP, 8.12% improvements
in terms of NMI, 4.86% in terms of ARI, 10.67% in terms of

11

TABLE 3: Node classification results (%) of the HAE variants.

Method
DBLP IMDB HUAWEI

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Best Baseline 93.15 93.77 60.01 60.61 42.69 43.73

HAE2l
SCL 91.82±.11 90.86±.12 61.44±.10 62.29±.09 41.12±.11 40.74±.12

HAE4l
CAL 93.07±.09 92.67±.08 61.83±.08 62.97±.08 43.28±.08 42.43±.08

HAE2l
GNN 92.30±.07 91.97±.06 61.63±.07 62.32±.04 42.37±.06 42.05±.05

HAE4l
GNN 93.69±.03 93.82±.02 62.96±.05 62.61±.04 42.83±.03 43.97±.04

TABLE 4: Node clustering results (%) of the HAE variants.

Method
DBLP IMDB HUAWEI

NMI ARI FMI NMI ARI FMI NMI ARI FMI

Best Baseline 73.00 77.48 84.85 30.86 29.59 42.03 29.25 27.24 37.37

HAE2l
SCL 74.28±.11 77.62±.10 83.26±.11 28.76±.09 28.13±.08 41.29±.07 28.26±.17 25.63±.12 35.95±.14

HAE4l
CAL 76.96±.08 79.33±.09 85.56±.09 31.33±.07 32.12±.09 45.58±.09 30.33±.06 26.82±.09 38.24±.08

HAE2l
GNN 75.42±.05 78.64±.05 84.03±.05 29.36±.04 28.54±.03 42.51±.05 28.32±.05 25.13±.06 36.28±.05

HAE4l
GNN 77.64±.02 79.79±.03 85.62±.03 32.63±.02 31.28±.03 44.82±.02 30.25±.03 28.17±.03 38.92±.02

FMI on IMDB, and 3.18% improvements in terms of NMI,
2.70% in terms of ARI, 4.19% in terms of FMI on HUAWEI.
Compared to MAGNN, HGT and HetGNN, HAE4l

GNN also
achieves at least 4.64% improvements in terms of NMI,
2.35% in terms of ARI, 1.07% in terms of FMI on DBLP,
1.77% improvements in terms of NMI, 1, 69% in terms of
ARI, 2.79% in terms of FMI on IMDB, and 1.00% improve-
ments in terms of NMI, 0.93% in terms of ARI, 1.55% in
terms of FMI on HUAWEI. This suggests that the proposed
higher-order attribute-enhancing approach is more effective
in node clustering tasks.

Figs. 4(a)-(h) present the visualization results of the base-
line models, and (l) that of HAE4l

GNN on the DBLP dataset.
The visualization result of HAE4l

GNN is significantly better
than the baselines. Specifically, the number of the clusters is
consistent with the number of the ground truth classes, the
clusters are compact, and the separations between the clus-
ters are clear. This qualitatively verifies that HAE4l

GNN better
captures the relations between nodes compared to the base-
lines. As expected, metapath2vec gives a better visualization
result than the homogeneous Deepwalk model, because it
introduces heterogeneity. However, the boundaries of its
clusters are fairly blurry. The GNN based models perform
better than the unsupervised random-walk based models,
in the sense that the clusters are much clearly separated.
Also, compared to GCN and GAT, HAN, GTN, HetGNN
and HGT incorporate richer semantics, and as a result, their
results show fewer overlaps between clusters.

5.6 Comparison of the HAE Variants
This section compares different variants under the proposed
HAE framework. We experiment with three architectures,
i.e., HAEGNN , HAESCL and HAECAL. Specifically, we
study HAE2l

GNN and HAE4l
GNN for HAEGNN , HAE2l

SCL for
HAESCL, and HAE4l

CAL for HAECAL. We conduct node
classification, node clustering and visualization for a com-
prehensive comparison. The default training ratio is 80%,
and other experimental settings are conducted in the same
manner as in Sections 5.4 and 5.5. We perform 5-fold cross-
validation on each of the datasets.

We present the node classification results and standard
deviations of the HAE models in Table 3. We copy the
highest results given by the baselines from Table 1 for a
direct comparison. We see that the heterogeneous graph
neural network models, including HGT and HetGNN,
have achieved better node classification performances than
HAE2l

SCL, HAE2l
GNN and HAE4l

CAL, but they are all lower
than the performances of HAE4l

GNN . The experimental re-
sults of consistency improvement show that the semantic-
based and content-based nodes’ interactions and higher-
order attention architecture are all directly conducive to
give better performances. HAE4l

GNN outperforms HAE4l
CAL

in four out of six cases, and outperforms HAE2l
GNN in all the

cases, which suggests that the rich semantics and the higher-
order architecture both contribute to better classification
performances, and should be used in combination. Even
as the number of layers increases, the performance of the
model becomes more stable.

Table 4 presents the node clustering results and stan-
dard deviations of the HAE models, along with the high-
est baselines’ results copied from Table 2. Most variants
of HAE are better than the best baseline results, and the
HAE4l

GNN model has achieved consistent, significant and
stable improvements compared to the best baseline results.
HAE4l

GNN and HAE4l
CAL perform better than the other two

HAE models, and HAE4l
GNN outperforms HAE4l

CAL in six
out of nine cases. This testifies the effectiveness of com-
bining semantics with higher-order architectures. Figs. 4(i)-
(l) present the visualization results of the HAE models.
HAE4l

GNN and HAE4l
CAL show better visualization results

than the other two, in the sense that the clusters are more
compact and the separations are clearer. This suggests that
a higher order attribute-enhancing framework can help im-
prove the visualization performances.

To conclude, experimental results imply the effectiveness
of our semantic incorporation and higher-order attribute-
enhancing approaches. We provide a more detailed analysis
of their effects in Sections 5.7 and 5.8. HAE4l

GNN , which
leverages these approaches in combination, is generally a
better performing one among the HAE models.

12

TABLE 5: Comparison of node classification results (%) with and without using meta-graphs. Macro/Micro-F1 is the result
without using meta-graphs, and ∆ means the difference between using meta-graphs and not using them.

Method
DBLP IMDB HUAWEI

Macro-
F1

∆Macro-
F1

Micro-
F1

∆Micro-
F1

Macro-
F1

∆Macro-
F1

Micro-
F1

∆Micro-
F1

Macro-
F1

∆Macro-
F1

Micro-
F1

∆Micro-
F1

Best Baseline 93.15 - 93.77 - 60.01 - 60.61 - 42.69 - 43.73 -

HAE2l
SCL 90.76±.08 -1.06 90.33±.08 -0.53 60.17±.07 -1.27 60.92±.07 -1.37 39.12±.06 -2 39.38±.06 -1.36

HAE4l
CAL 92.76±.07 -0.31 92.17±.06 -0.5 61.04±.07 -0.79 61.24±.06 -1.73 42.46±.06 -0.82 42.13±.05 -0.3

HAE2l
GNN 91.25±.06 -1.05 91.37±.05 -0.6 60.42±.05 -1.21 61.27±.05 -1.05 40.18±.04 -2.19 40.37±.04 -1.68

HAE4l
GNN 92.55±.04 -1.14 92.95±.03 -0.87 62.38±.04 -0.58 62.09±.03 -0.52 41.83±.03 -1 42.54±.02 -1.43

APCPA APTPA APA(C)PA APT(C)PA
DBLP

0.0

0.1

0.2

0.3

0.4

MAM MDM MR(D)MA(D)M
IMDB

0.00

0.15

0.30

0.45

0.60

UATAU UAU UU UAT(U)AU
HUAWEI

0.00

0.15

0.30

0.45

0.60

Fig. 5: The weights of the semantic structures learned by HAE4l
GNN .

5.7 Evaluation of Semantic Incorporation

This section evaluates the effectiveness of our semantic
incorporation. Recall that our approach is novel in two
aspects. First, in addition to meta-paths, we learn semantics
from meta-graphs, which are omitted by previous hetero-
geneous GNNs. Second, we associate a trainable weight
with each semantic structure to emphasize more on the
important semantic structures. To evaluate the former, we
conduct node classification experiments without using the
meta-graphs for a comparison. To evaluate the latter, we
present and interpret the learned weights of the meta-paths
and meta-graphs used in this study.

We reconstruct the HAE models, including HAE4l
GNN ,

HAE2l
GNN , HAE2l

SCL and HAE4l
CAL solely using the meta-

paths. The results are presented in Table 5. Besides Marco-
F1, Micro-F1 and standard deviations, we also present the
drops in these two metrics compared to the original node
classification results shown in Table 1. We copy the highest
results given by the baselines from Table 1 for a direct com-
parison. We can tell that incorporating meta-graphs can help
improve node classification performances, as all our models
give higher results when simultaneously leveraging meta-
paths and meta-graphs, and removing the meta-graphs
could result in a drop of 0.3% ∼ 2.2% in Macro-F1 and
0.3% ∼ 1.7% in Micro-F1. This indicates that incorporating
meta-graphs in the learning process is quite beneficial.

We report the weights of all semantic structures used in
this study that are learned by the proposed HAE4l

GNN model
in Fig. 5. In general, for all the three datasets, the meta-
graphs have higher weights than the meta-paths. This sug-
gests that the model relies more on the meta-graphs rather
than the meta-paths. This is reasonable, as the meta-graphs
convey more complex semantics, and are better indicators
of the nodes’ relatedness. For example, in DBLP, meta-
graph APT (C)PA is more rigid than meta-path APCPA,
and therefore, two authors connected by the former are
more likely to be in the same research field as opposed

to those that are connected by the latter. We also com-
pare the different meta-paths. In DBLP, meta-path APTPA
has a higher weight than APCPA, because working on a
common subject can better indicate the similarity between
two authors’ research fields as compared to submitting to a
common conference. In IMDB, MDM has a slightly higher
weight than MAM , as directors are more likely to devote
themselves to specific movie genre types than the actors do.
In HUAWEI, UATAU has a higher weight than the other
two meta-paths. This is reasonable. For example, two users
that both use English learning apps are likely to be students
of similar ages. In contrast, UU has a lower weight, because
age is not the main factor that affects people when choosing
who to follow on social media. In essence, through the use of
the weights vector, the proposed model is capable of relying
more on the important semantic structures.

To conclude, the proposed HAEGNN model leverages
meta-graphs, which, as shown in the experiments, help
enhance the performances. HAEGNN also detects the im-
portant semantic structures and learns interpretable weights
for all semantic structures.

5.8 Evaluation of Higher-Order Attribute-Enhancing
In this section, we study the effects of the higher-orderliness
in the proposed HAE framework.

We first observe how the order of our models affects
the node classification performances. We experiment with
two models under the HAE framework, i.e., HAEGNN and
HAECAL. We let the orders of them vary from 2 to 5, and
present their node classification performances in Fig. 6. On
all the three datasets, the Macro-F1 and Micro-F1 scores of
HAEGNN generally increase as we increase the order up to
4. This is because as the order becomes higher, HAEGNN

gradually incorporates more CALs, and pays attention to
more distant neighbors of each node. The performances
of HAEGNN reach the maximum when the order reaches
4, and start to drop after that because of overfitting. For

13

Fig. 6: Node classification results with different orders. Here we experiment on HAEGNN and HAECAL of order 2 through
5. For each model, we conduct node classification on all the three datasets, and present Macro-F1 as well as Micro-F1 scores.

30%

20%

10%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

M
em

ory usage

Time (s)

85.4%

79.6%68.2%

52.5%49.8%
60.1% 50.2%48.9%

42.3% 41.9%

47.1%

Fig. 7: Memory consumptions over time. We run each model for 100 epochs on the DBLP dataset. The percentage of
memory usage is measured at 8 GB. We mark the maximum memory consumption of each model.

HAECAL, higher order also helps, but its effects are not
as significant. On DBLP, HAE3l

CAL shows higher Macro-
F1 and Micro-F1 scores than HAE2l

CAL, and the HAE4l
CAL

performs slightly better than HAE3l
CAL if considering the

averages of their Macro-F1 and Micro-F1 scores. On IMDB
and HUAWEI, varying the order does not affect the per-
formances by much, as HAE2l

CAL, HAE3l
CAL and HAE4l

CAL

show around the same average F1 scores.
The performances of HAECAL also start to drop, as

the effect of overfitting, when the order becomes too high
(>4). Also, a comparison between the datasets suggests
that the higher-order models are more effective for the
DBLP dataset, as HAE4l

GNN and HAE4l
CAL improve upon

HAE2l
GNN and HAE2l

CAL, respectively. On HUAWEI and
IMDB, however, the effects of increasing the order are less
significant. In short, higher order can help improve the node
classification performances, and it is especially effective for
the proposed HAEGNN model. The effectiveness of the
higher-orderliness is also affected by the dataset.

We also observe the memory efficiency of HAEGNN

when its order varies. Fig. 7 shows the changes in memory
usage of HAEGNN models as well as the GNN based base-
line models running on the DBLP dataset for 100 epochs.

Here, all processes of computing the commuting matrix are
performed in parallel on GPUs, and are included in the
Fig. 7. It is worth noting that HAE2l

GNN , which outperforms
the previous state-of-the-art baselines such as HAN, GTN
in node classification and node clustering, is also more
efficient in terms of memory and/or time consumptions.
Fig. 7 shows that HAE2l

GNN requires around 19.6% and 7.4%
less memory as compared to HAN and GTN, respectively.
Furthermore, HAE2l

GNN takes less time than GTN (20 versus
23 seconds) to run for 100 epochs. Compared to GCN, mod-
els that involve multi-head attention such as GAT, HAN,
HGT, MAGNN and HAEGNN models, or multiple channels
such as GTN, require more memory. Among them, HGT
consumes more memory than the others, because it not only
applies multi-head attention units but also uses residual
neural networks, message passing, aggregation functions,
etc. Among all methods, HetGNN consumes the most mem-
ory, because it simultaneously utilizes multi-head attention
units, bi-LSTM units and other complex neural networks.
HAEGNN models require more memory as the order in-
creases; however, the increments in memory consumption
are not significant. Also, higher-order HAEGNN models
take more time to run because of their deeper structures.

14

As the number of layers increases, the time consumption of
the HAEGNN models also increases, which is an acceptable
training process.

To conclude, the higher-order architecture in HAEGNN

helps improve its performance. HAEGNN is able to achieve
superior performances with less memory and/or time con-
sumptions compared to state-of-the-art baselines.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel HAEGNN model for
heterogeneous network representation learning. HAEGNN

simultaneously leverages meta-paths and meta-graphs
for rich semantics. Moreover, HAEGNN incorporates the
content-based interactions between first-order as well as
higher-order neighboring nodes. The proposed model out-
performs state-of-the-art baselines in node classification,
node clustering, and visualization tasks. Experimental re-
sults verify the effectiveness of our semantic learning ap-
proaches as well as our higher-order attribute-enhancing
strategy, and also demonstrate the efficiency as well as the
good explainability of the results and proposed model.

There are some potential improvements to the proposed
model that could be addressed in the future. For exam-
ple, in addition to incorporating the heterogeneity of the
nodes, effective approaches to leverage the heterogeneity of
the edges could also be explored. Also, we may leverage
Transformer [50], [11] to explore the nodes’ and edges’
sequence information. Even, we may extend the proposed
model to inductive learning in dynamics. Moreover, as real-
world graphs such as social networks contain the informa-
tion of different modalities, another particularly meaningful
research direction would be extending our approach to
incorporate information of more modalities such as images.

ACKNOWLEDGEMENT

This work is supported by the NSFC program (No.
U20B2053 and 62002007), S&T Program of Hebei through
grant 20310101D, and SKLSDE-2020ZX-12. Philip S. Yu is
supported by NSF under grants III-1763325, III-1909323, and
SaTC-1930941.

REFERENCES

[1] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classifica-
tion in social networks,” in Social network data analytics. Springer,
2011, pp. 115–148.

[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the NIPS, 2017, pp.
1024–1034.

[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proceedings of the ICLR,
2018.

[4] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of the ICLR, 2017.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proceedings of the
ICLR, 2015.

[7] D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in Proceedings of the SIGKDD. ACM, 2016, pp. 1225–1234.

[8] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in Proceedings of the
WWW. ACM, 2019, pp. 2022–2032.

[9] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph trans-
former networks,” in Proceedings of the NIPS, 2019, pp. 11 983–
11 993.

[10] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the SIGKDD.
ACM, 2019, pp. 793–803.

[11] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph
transformer,” in Proceedings of the WWW. ACM, 2020, pp. 2704–
2710.

[12] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath ag-
gregated graph neural network for heterogeneous graph embed-
ding,” in Proceedings of the WWW. ACM, 2020, pp. 2331–2341.

[13] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2016.

[14] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph
based recommendation fusion over heterogeneous information
networks,” in Proceedings of the SIGKDD. ACM, 2017, pp. 635–644.

[15] A. Sankar, X. Zhang, and K. C.-C. Chang, “Meta-gnn: Metagraph
neural network for semi-supervised learning in attributed hetero-
geneous information networks,” in Proceedings of the ASONAM,
2019, pp. 137–144.

[16] Y. He, Y. Song, J. Li, C. Ji, J. Peng, and H. Peng, “Hetespaceywalk:
a heterogeneous spacey random walk for heterogeneous informa-
tion network embedding,” in Proceedings of the CIKM, 2019, pp.
639–648.

[17] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Metagraph2vec: Complex
semantic path augmented heterogeneous network embedding,” in
Proceedings of the PAKDD. Springer, 2018, pp. 196–208.

[18] C. Yang, Y. Feng, P. Li, Y. Shi, and J. Han, “Meta-graph based
hin spectral embedding: Methods, analyses, and insights,” in
Proceedings of the ICDM. IEEE, 2018, pp. 657–666.

[19] L. Sun, L. He, Z. Huang, B. Cao, C. Xia, X. Wei, and S. Y. Philip,
“Joint embedding of meta-path and meta-graph for heterogeneous
information networks,” in Proceedings of the ICBK. IEEE, 2018, pp.
131–138.

[20] J.-B. Cordonnier, A. Loukas, and M. Jaggi, “On the relationship
between self-attention and convolutional layers,” in Proceedings of
ICLR, 2020.

[21] N. Parmar, P. Ramachandran, A. Vaswani, I. Bello, A. Levskaya,
and J. Shlens, “Stand-alone self-attention in vision models,” in
Proceedings of the NIPS, 2019, pp. 68–80.

[22] M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in Proceedings of the IJCNN, vol. 2.
IEEE, 2005, pp. 729–734.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[24] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” 2014.

[25] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[26] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Proceedings of the NIPS, 2016, pp. 3844–3852.

[27] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional
networks on graphs for learning molecular fingerprints,” in Pro-
ceedings of the NIPS, 2015, pp. 2224–2232.

[28] J. Atwood and D. Towsley, “Diffusion-convolutional neural net-
works,” in Proceedings of the NIPS, 2016, pp. 1993–2001.

[29] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, no. 5, pp. 833–852, 2018.

[30] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the SIGKDD. ACM, 2016, pp.
855–864.

[31] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the SIGKDD. ACM,
2014, pp. 701–710.

[32] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding,” in Proceedings of the SIGKDD.
ACM, 2016, pp. 1105–1114.

[33] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proceedings of the AAAI, 2017.

[34] H. Gao and H. Huang, “Deep attributed network embedding.” in
IJCAI, vol. 18, 2018, pp. 3364–3370.

15

[35] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
WWW. ACM, 2015, pp. 1067–1077.

[36] R. A. Rossi, N. K. Ahmed, and E. Koh, “Higher-order network
representation learning,” in Proceedings of the The Web Conference.
ACM, 2018, p. 3–4.

[37] A. G. Carranza, R. A. Rossi, A. Rao, and E. Koh, “Higher-order
clustering in complex heterogeneous networks,” in Proceedings of
the SIGKDD. ACM, 2020, pp. 25–35.

[38] C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding
enhancement via high order proximity approximation.” in Pro-
ceedings of the IJCAI, 2017, pp. 3894–3900.

[39] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proceed-
ings of the SIGKDD. ACM, 2017, pp. 135–144.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proceedings of the ICLR, 2019.

[41] S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang, “Relation structure-
aware heterogeneous graph neural network,” in Proceedings of the
ICDM. IEEE, 2019, pp. 1534–1539.

[42] H. Peng, R. Yang, Z. Wang, J. Li, L. He, P. Yu, A. Zomaya, and
R. Ranjan, “Lime: Low-cost incremental learning for dynamic
heterogeneous information networks,” IEEE Transactions on Com-
puters, pp. 1–1, 2021.

[43] H. Peng, J. Li, Q. Gong, Y. Song, Y. Ning, K. Lai, and P. S.
Yu, “Fine-grained event categorization with heterogeneous graph
convolutional networks,” in Proceedings of the IJCAI, 2019, pp.
3238–3245.

[44] H. Peng, J. Li, Y. Song, R. Yang, R. Rajiv, Y. Philip S., and H. Li-
fang, “Streaming social event detection and evolution discovery
in heterogeneous information networks,” ACM Transactions on
Knowledge Discovery from Data, 2021.

[45] Y. Cao, H. Peng, and S. Y. Philip, “Multi-information source hin
for medical concept embedding,” in Proceedings of the PAKDD.
Springer, 2020, pp. 396–408.

[46] Y. Gao, L. Xiaoyong, P. Hao, B. Fang, and P. Yu, “Hincti: A cyber
threat intelligence modeling and identification system based on
heterogeneous information network,” IEEE Transactions on Knowl-
edge and Data Engineering, 2020.

[47] T. Chen and Y. Sun, “Task-guided and path-augmented heteroge-
neous network embedding for author identification,” in Proceed-
ings of the WSDM. ACM, 2017, pp. 295–304.

[48] C. Zhang, C. Huang, L. Yu, X. Zhang, and N. V. Chawla, “Camel:
Content-aware and meta-path augmented metric learning for au-
thor identification,” in Proceedings of the WWW. ACM, 2018, pp.
709–718.

[49] H. Wang, F. Zhang, M. Hou, X. Xie, M. Guo, and Q. Liu, “Shine:
Signed heterogeneous information network embedding for senti-
ment link prediction,” in Proceedings of the WSDM. ACM, 2018,
pp. 592–600.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the NIPS, 2017, pp. 5998–6008.

[51] H. Peng, J. Li, S. Wang, L. Wang, Q. Gong, R. Yang, B. Li, P. Yu,
and L. He, “Hierarchical taxonomy-aware and attentional graph
capsule rcnns for large-scale multi-label text classification,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–1, 2019.

[52] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the CVPR. IEEE, 2018, pp. 7132–7141.

[53] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proceedings of the CVPR. IEEE, 2019, pp. 2820–2828.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” Proceedings of the ICLR, 2015.

Jianxin Li is currently a Professor with the State
Key Laboratory of Software Development Envi-
ronment, and Beijing Advanced Innovation Cen-
ter for Big Data and Brain Computing in Beihang
University. His current research interests include
machine learning, distributed system, trust man-
agement and network security.

Hao Peng is currently an assistant professor
with Beijing Advanced Innovation Center for Big
Data and Brain Computing in Beihang University,
and School of Cyber Science and Technology
in Beihang University. His research interests in-
clude representation learning, text mining and
social network mining.

Yuwei Cao is currently a Ph.D. candidate in the
Department of Computer Science at University
of Illinois at Chicago. Her research interests in-
clude representation learning, graph embedding
and social network mining.

Yingtong Dou is currently a Ph.D. candidate in
the Department of Computer Science at Univer-
sity of Illinois at Chicago. His research interests
include graph mining, fraud detection and secure
machine learning.

Hekai Zhang is a graduate student in the School
of Information Science and Engineering, Yan-
shan University. His main research interests in-
clude machine learning and Graph neural net-
work.

Philip S. Yu is a Distinguished Professor and the
Wexler Chair in Information Technology at the
Department of Computer Science, University of
Illinois at Chicago. He is a Fellow of the ACM and
IEEE. Dr. Yu was the Editor-in-Chiefs of ACM
Transactions on Knowledge Discovery from Data
(2011-2017) and IEEE Transactions on Knowl-
edge and Data Engineering (2001-2004).

Lifang He is currently an Assistant Professor in
the Department of Computer Science and Engi-
neering at Lehigh University. Before her current
position, Dr. He worked as a postdoctoral re-
searcher in the Department of Biostatistics and
Epidemiology at the University of Pennsylvania.
Her current research interests include machine
learning, data mining, tensor analysis, with ma-
jor applications in biomedical data and neuro-
science.

	Introduction
	Related work
	Preliminary
	The Proposed Model
	Semantic-Based Convolutional Layer
	Content-Based Self-Attention Layer
	Higher-Order Attribute-Enhancing Framework

	Experiments
	Datasets
	Baselines
	Experimental Settings
	Node Classification
	Node Clustering and Visualization
	Comparison of the HAE Variants
	Evaluation of Semantic Incorporation
	Evaluation of Higher-Order Attribute-Enhancing

	Conclusion And Future Work
	References
	Biographies
	Jianxin Li
	Hao Peng
	Yuwei Cao
	Yingtong Dou
	Hekai Zhang
	Philip S. Yu
	Lifang He

